
Python Classes orObjects

June 5, 2024

0.1 Python Classes/Objects
Dr. Labeed Al-Saad

Python is an object oriented programming language.

Almost everything in Python is an object, with its properties and methods.

A Class is like an object constructor, or a “blueprint” for creating objects.

Create a Class:

To create a class, use the keyword class:

Example:

Create a class named MyClass, with a property named x:

[1]: class MyClass:
x = 5

p1 = MyClass()
print(p1.x)

5

0.2 The init() Function
The examples above are classes and objects in their simplest form, and are not really useful in real
life applications.

To understand the meaning of classes we have to understand the built-in init() function.

All classes have a function called init(), which is always executed when the class is being initiated.

Use the init() function to assign values to object properties, or other operations that are necessary
to do when the object is being created:

0.3 Note: The init() function is called automatically every time the class is
being used to create a new object.

Example:

Create a class named Person, use the init() function to assign values for name and age:

1

[12]: class Person:
def __init__(self, name, age):

self.name = name
self.age = age

p1 = Person("John", 36)

print(p1.name)
print(p1.age)

John
36

0.4 The str() Function
The str() function controls what should be returned when the class object is represented as a string.

If the str() function is not set, the string representation of the object is returned:

Example:

The string representation of an object WITHOUT the str() function:

[13]: class Person:
def __init__(self, name, age):

self.name = name
self.age = age

p1 = Person("John", 36)

print(p1)

<__main__.Person object at 0x00000205ECBB6010>

Example:

The string representation of an object WITH the str() function:

[15]: class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def __str__(self):
return f"{self.name}: {self.age}"

p1 = Person("John", 36)

print(p1)

John: 36

2

0.5 Object Methods
Objects can also contain methods. Methods in objects are functions that belong to the object.

Let us create a method in the Person class:

Example:

Insert a function that prints a greeting, and execute it on the p1 object:

[18]: class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def myfunc(self):
print("Hello my name is " + self.name)

p1 = Person("John", 36)
p1.myfunc()

Hello my name is John

0.6 Note: The self parameter is a reference to the current instance of the class,
and is used to access variables that belong to the class.

0.7 The self Parameter
The self parameter is a reference to the current instance of the class, and is used to access variables
that belongs to the class.

It does not have to be named self , you can call it whatever you like, but it has to be the first
parameter of any function in the class:

Example:

Use the words mysillyobject and abc instead of self:

[19]: class Person:
def __init__(mysillyobject, name, age):

mysillyobject.name = name
mysillyobject.age = age

def myfunc(abc):
print("Hello my name is " + abc.name)

p1 = Person("John", 36)
p1.myfunc()

Hello my name is John

3

0.8 Modify Object Properties
You can modify properties on objects like this:

Example:

Set the age of p1 to 40:

[23]: class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def myfunc(self):
print("Hello my name is " + self.name)

p1 = Person("John", 36)
print(p1.name, p1.age)
p1.age = 40

print("the age is apdated to", p1.age)

John 36
the age is apdated to 40

0.9 Delete Object Properties
You can delete properties on objects by using the del keyword:

Example:

Delete the age property from the p1 object:

[27]: class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def myfunc(self):
print("Hello my name is " + self.name)

p1 = Person("John", 36)

del p1.age

print(p1.age)

AttributeError Traceback (most recent call last)
Cell In[27], line 13

9 p1 = Person("John", 36)

4

11 del p1.age
---> 13 print(p1.age)

AttributeError: 'Person' object has no attribute 'age'

[]: Delete Objects
--
You can delete objects by using the del keyword:

Example:

Delete the p1 object:

[28]: class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def myfunc(self):
print("Hello my name is " + self.name)

p1 = Person("John", 36)

del p1

print(p1)

NameError Traceback (most recent call last)
Cell In[28], line 13

9 p1 = Person("John", 36)
11 del p1

---> 13 print(p1)

NameError: name 'p1' is not defined

0.10 The pass Statement
class definitions cannot be empty, but if you for some reason have a class definition with no content,
put in the pass statement to avoid getting an error.

Example:

[29]: class Person:
pass

5

	Python Classes/Objects
	The init() Function
	Note: The init() function is called automatically every time the class is being used to create a new object.
	The str() Function
	Object Methods
	Note: The self parameter is a reference to the current instance of the class, and is used to access variables that belong to the class.
	The self Parameter
	Modify Object Properties
	Delete Object Properties
	The pass Statement

